

Empirical Research

Human-Computer Interaction Exercise

Storks Deliver Babies

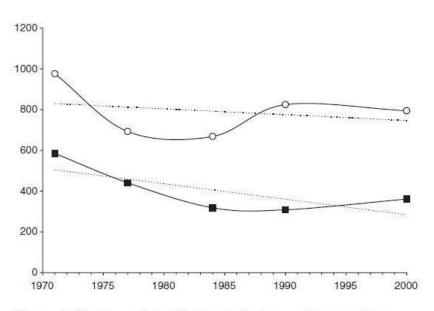
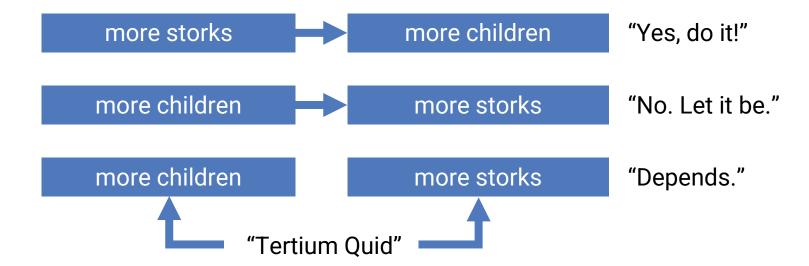
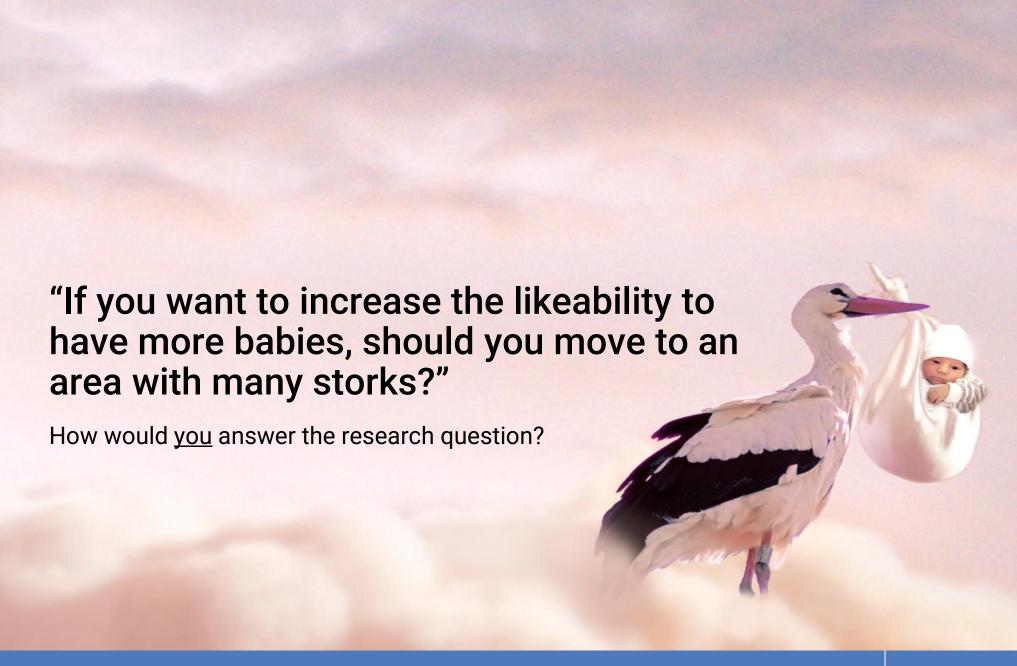
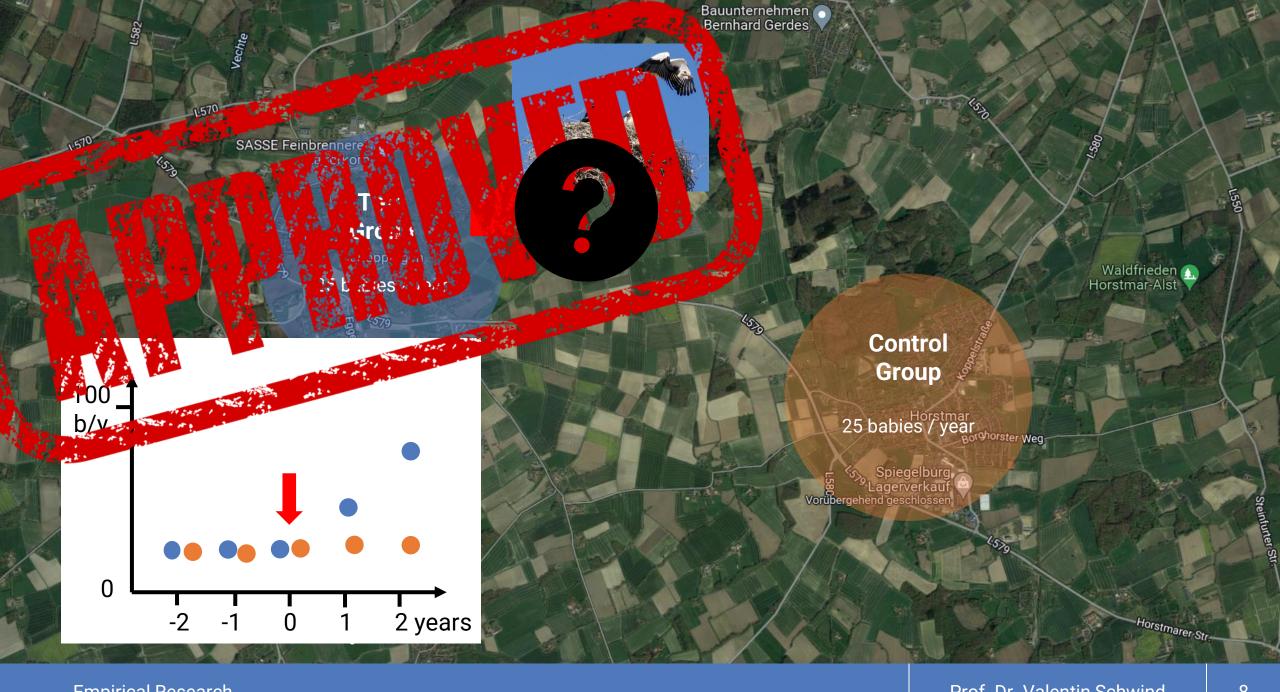


Figure 1. Storks and the birth rate in Lower Saxony, Germany (1971–2000). Open circles show yearly birthrates in hundreds in Lower Saxony. Full squares show numbers pairs of storks in Lower Saxony. Dotted lines represent linear regression trend (y = mx + b).

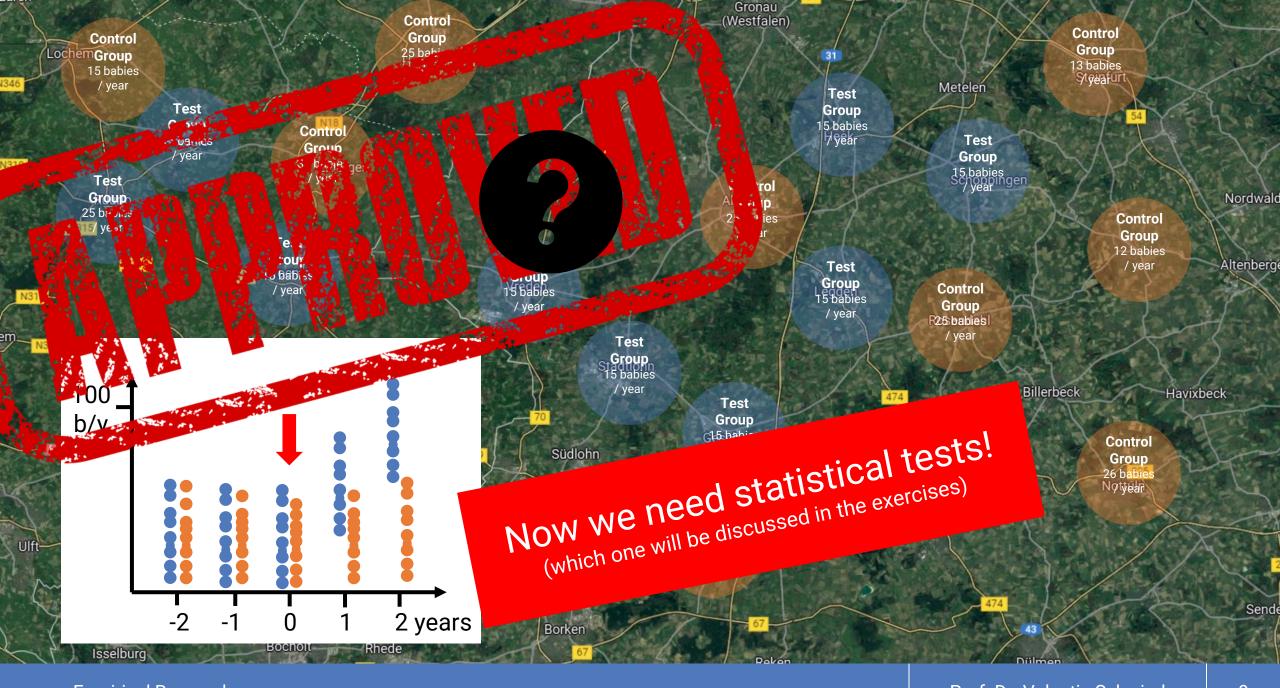

Matthews, R. (2000), Storks Deliver Babies (p= 0.008). Teaching Statistics, 22: 36-38. doi:10.1111/1467-9639.00013

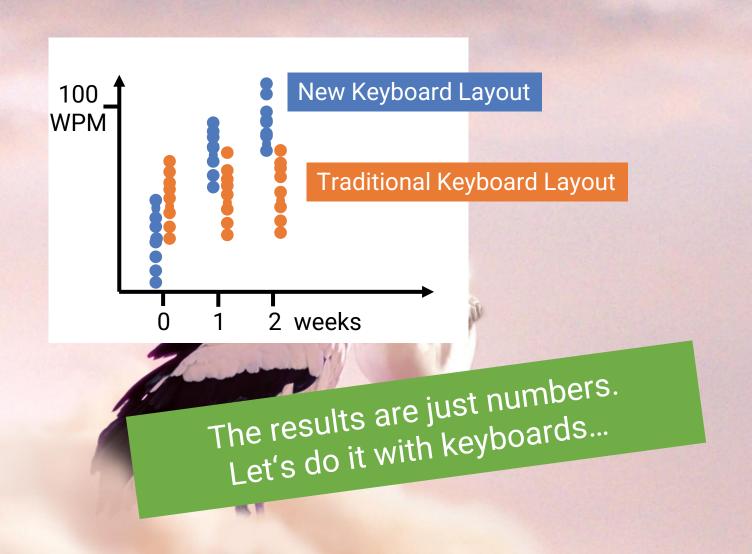
Höfer, Thomas & Przyrembel, Hildegard & Höfer, Silvia. (2004). New evidence for the Theory of the Stork. Paediatric and perinatal epidemiology. 18. 88-92. 10.1111/j.1365-3016.2003.00534.x.




Causation and Correlation

- A correlation cannot separate cause from effect, however,...
- ... it's still a fact: birthrate and number of stork correlate. Any implications?
 - > Question: "If I want more babies, should I move to an area with many storks?"

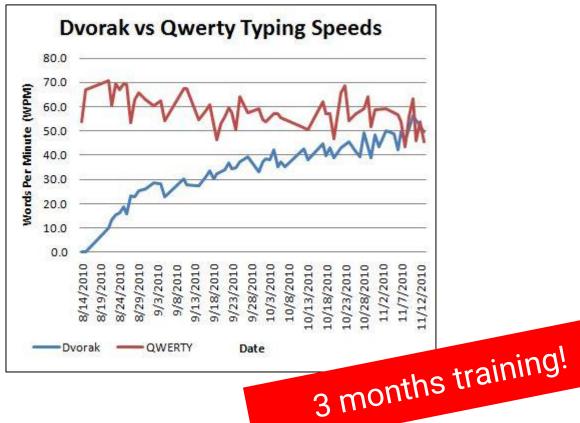

Everything starts with a research question...


Empirical Research

Prof. Dr. Valentin Schwind

What the heck have storks to do with HCI?

Discussion



10

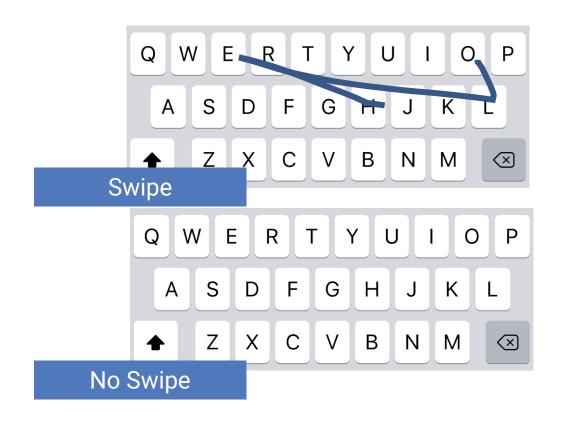
Let's test our new keyboard layout!

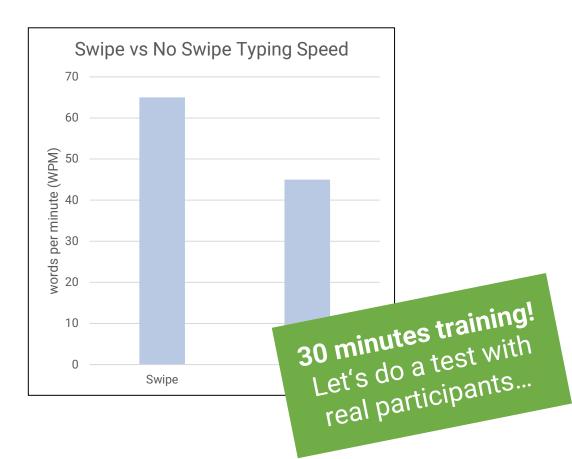
What is the problem when we develop new keyboard layouts?

Images from https://www.boundlessat.com/Keyboards-Mice/Alternative-Keyboards

Inventing Swipe

Let's imagine we invented a gesture-based typing technique and call it SWIPE





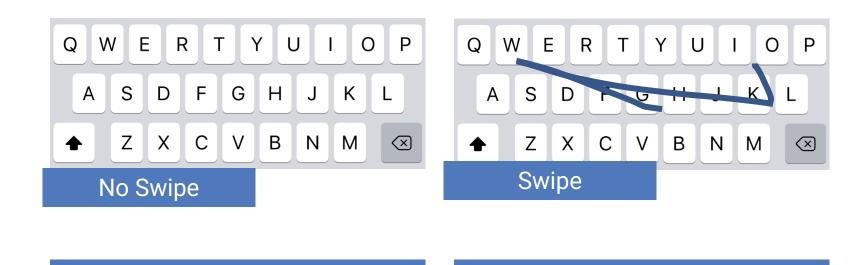
https://www.youtube.com/watch?app=desktop&v=1dr068gL03g https://www.engadget.com/2019-06-03-apple-ios-13-quickpath-swipe-keyboard.html

Inventing Swipe

First tests with us seem promising. But: Does it work with real participants?

13

Let's design an empirical study...


- The research question: "Does Swipe improve the typing performance on touch displays (compared to a regular smartphone keyboard)?"
- Do we need a qualitative or quantitative research method?
 - > Quantitative because of three reasons:
 - > We can measure performance
 - > We can formulate a hypotheses:
 - > H1a: Swipe improves the typing performance.
 - > ... and we can falsify it (the null hypothesis):
 - > H0a: Swipe does not improve the typing performance
- → Let's use a quantitative method and measure performance
 - We'll later learn, that qualitative methods can be great for our research, too.

Empirical Research Prof. Dr. Valentin Schwind

14

Swipe vs No Swipe – whats better?

We are assuming that "better" = "more performance", which is not necessarily true.

the standard or "control"

the factor we change

Quantitative Studies

The factor you change is the Independent Variable

> STORKS = SWIPE The Independent Variable

Control Group
Test Group = No Swipe (normal keyboard)
Test Group = Swipe (our technique)

The Independent Variable

The levels of the IV

- Your measure is the Dependent Variable
 - > Births per year = Words per minute (WPM) < The Dependent Variable
- But how can we ensure that only that factor is affecting our experiment?
 - > By keeping all other factors in our experiment stable, but is that possible?
 - > No. We always have **Confounds** that we cannot control and may distort our experiment.
 - > Environment, weather, training, individual differences,...

The Confounds

16

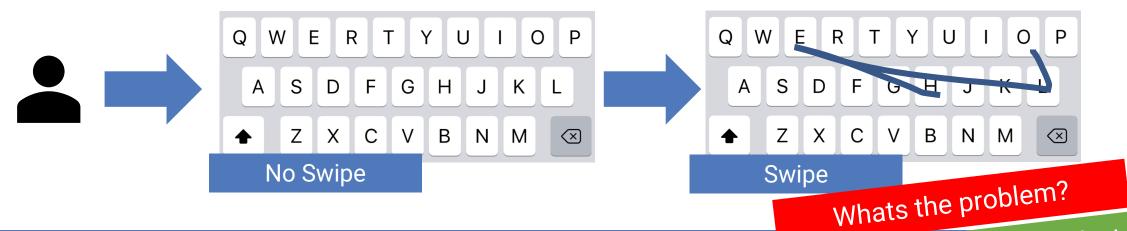
Independent Variables (IV) and their Levels

- An IV (here: SWIPE) must have at least 2 levels that allow us to control that factor
 - > We define these levels. This is why we called it the "independent" variable
 - > Levels are (nominal) categories: e.g., No Swipe (normal), Swipe (our awesome technique)
- We must assign these levels to our participants
 - > When we do that, levels become conditions

17

- Either we assign participants...
 - randomly to only one level of the IV (e.g., in A/B testing or medical treatments)
 - → This is called a **between-subject** (or between-groups) **variable**
 - > to each level of the IV (e.g., in surveys or many lab studies)
 - → This is called a within-subject (or within-groups) variable
 - In some cases, within-subject IVs have indefinite levels and are numeric
 - , "number x is a function of y"

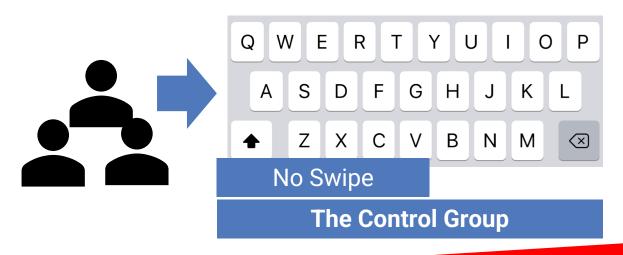
The Dependent Variable


- The thing that you measure (typically a metric or stuff you can count) should be part of your research question and hypothesis:
 - > The reserach question: "Does swipe improve the typing performance on touch displays?"
 - > H1a: "Swipe improves the typing performance."
 - > H0a: "Swipe does not improve the typing performance."
 - > H1b: "Swipe improves the <u>usability</u>."
 - > H0b: "Swipe does not improve the <u>usability</u>."
- The dependent variables are...
 - > typing performance that can be measured by:
 - words per minute (WPM), characters per minute (CPM), error rate (number of wrong / number of total words, number of backspace presses / number of characters, etc.), ...
 - > usability that can be measured by:
 - > System Usability Scale (SUS), NASA taskload index (TLX), ...

18

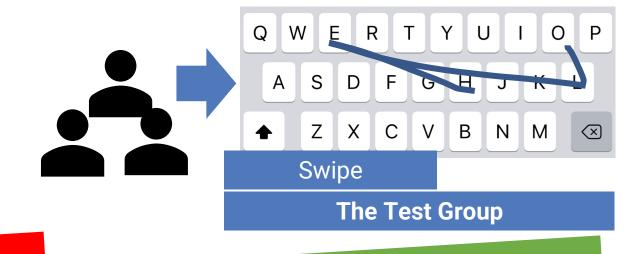
The Confounds / The Covariates

- In theory, we need to keep all confounding factors of the experiment (environment, weather, training, intelligence, mood, ...) stable
- This is not possible, but we can...
 - record and describe all confounds (also called covariates) in our experiment (gender, age, previous training, the location ...) and
 - > draw a random/representative sample (our participants) that must test both keyboards...



Carry-Over Effects

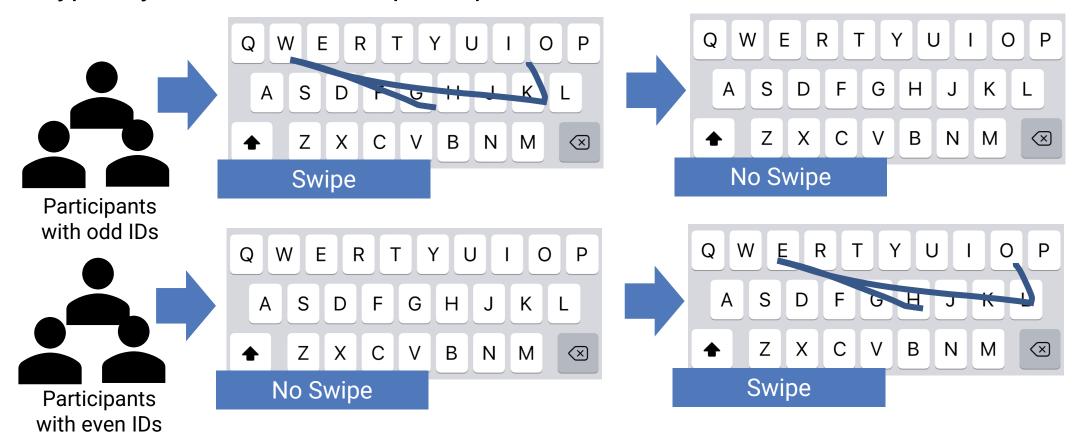
- Carry-over (or sequence) effects refer to the influence of a subsequent condition
- These effects can be
 - > physiological
 - > psychological
 - > behavioral
 - > or may manifest as learning, fatigue, or sensitization
- Carry-over effects are confounds and make it unclear whether the observed effects are due
 to the experimental manipulation or the effects of previous conditions
 - If you have them, your experiment is broken!
 - > We have them when people are using our smartphone and learn to type two times.
- How can we prevent carry-over effects?


Designing a Study

 We have two conditions (the two levels of our IV). To prevent carry-over effects we split them into two groups.

Such designs are very common in clinical studies.

But what is the problem with such designs?



We are poor. We don't have hundreds of participants.

21

Counterbalancing

Typically, we want that our participants do both conditions.

Empirical Research Prof. Dr. Valentin Schwind

22

Counterbalancing 2 Conditions

With two conditions we just keep continue switching the levels of the IV...

	Condition 1	Condition 2
Participant #1	Swipe	NoSwipe
Participant #2	NoSwipe	Swipe
Participant #3	Swipe	NoSwipe
Participant #4	NoSwipe	Swipe

Let add a third level of the IV: VibroSwipe

Let's integrate some tactile feedback! How would you design the experiment now?

	Condition 1	Condition 2	Condition 3
Participant #1	NoSwipe	Swipe	VibroSwipe
Participant #2	Swipe	NoSwipe	VibroSwipe
Participant #3	NoSwipe	VibroSwipe	Swipe
Participant #4	VibroSwipe	NoSwipe	Swipe
Participant #5	Swipe	VibroSwipe	NoSwipe
Participant #6	VibroSwipe	Swipe	NoSwipe

Calculate the number of combinations:

 $N! \rightarrow X$:

 $2 \rightarrow 2$

 $3 \rightarrow 6$

4 → 24

5 **→** 120

6 **→** 720

... we should defintely avoid permutations with more than 4 conditions! Or...?

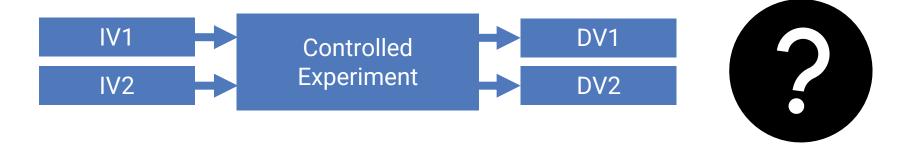
24

Balanced Latin Square

- A Latin square is an N × N array filled with n different symbols. They are useful to reduce order-effects when designing experiments with many conditions.
- A condition will precede another exactly once (or twice when condition no. is odd)
- Balanced Latin Square generator: https://hci-studies.org/balanced-latin-square/

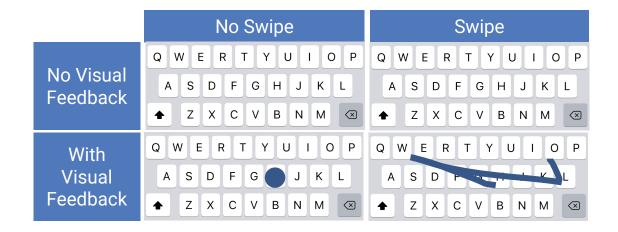
	Condition 1	Condition 2	Condition 3	Condition 4	Condition 5	Condition 6
Participant #1	Α	В	F	С	E	D
Participant #2	В	С	Α	D	F	E
Participant #3	С	D	В	E	Α	F
Participant #4	D	E	С	F	В	Α
Participant #5	E	F	D	Α	С	В
Participant #6	F	Α	E	В	D	С

Empirical Research Prof. Dr. Valentin Schwind


25

More Indepedent Variables?

 Controlled experiments are the only reliable mean to isolate cause (of the independent variable) from the effect (on the dependent variable)

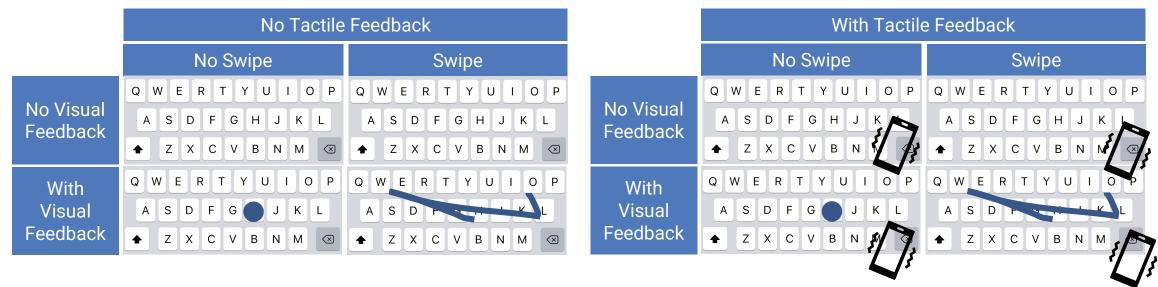


- What if there are potential two effects or if they potentially depend on each other?
 - Can we consider multiple IVs and observe effects on multipe DVs?

Full-Factorial Designs (2 Factors)

- Only in controlled experiments, we can observe the effects of multiple factors at the same time
- For example: SWIPE × VISUAL FEEDBACK

What does the Balanced Latin Square looks like?


Balanced Latin Square of a 2×2 Full-Factorial Design

■ The combination of each level becomes now a condition of the experiment...

	Condition 1	Condition 2	Condition 3	Condition 4
Participant #1	NoSwipe-	NoSwipe-	Swipe-	Swipe-
	NoVisualFeedback	VisualFeedback	VisualFeedback	NoVisualFeedback
Participant #2	NoSwipe-	Swipe-	NoSwipe-	Swipe-
	VisualFeedback	NoVisualFeedback	NoVisualFeedback	VisualFeedback
Participant #3	Swipe-	Swipe-	NoSwipe-	NoSwipe-
	NoVisualFeedback	VisualFeedback	VisualFeedback	NoVisualFeedback
Participant #4	Swipe-	NoSwipe-	Swipe-	NoSwipe-
	VisualFeedback	NoVisualFeedback	NoVisualFeedback	VisualFeedback
				→ Repeat the Lat

Full-Factorial Designs (3 Factors)

- Okay, now things are getting complicated: Can we observe the impact of 3 factors at once?
- For example: SWIPE × VISUAL FEEDBACK × TACTILE FEEDBACK

Yes. But what does the balanced Latin square looks like?

Balanced Latin Square of a 2×2×2 Full-Factorial Design

	Condition 1	Condition 2	Condition 3	Condition 4	Condition 5	Condition 6	Condition 7	Condition 8
Participant #1	None-None-	None-None-	None-Tactile-	None-Tactile-	Swipe-None-	Swipe-None-	Swipe-Tactile-	Swipe-Tactile-
	None	Visual	None	Visual	None	Visual	None	Visual
Participant #2	None-None-	None-Tactile-	None-None-	Swipe-None-	None-Tactile-	Swipe-Tactile-	Swipe-None-	Swipe-Tactile-
	Visual	Visual	None	Visual	None	Visual	None	None
Participant #3	None-Tactile-	Swipe-None-	None-None-	Swipe-Tactile-	None-None-	Swipe-Tactile-	None-Tactile-	Swipe-None-
	Visual	Visual	Visual	Visual	None	None	None	None
Participant #4	Swipe-None-	Swipe-Tactile-	None-Tactile-	Swipe-Tactile-	None-None-	Swipe-None-	None-None-	None-Tactile-
	Visual	Visual	Visual	None	Visual	None	None	None
Participant #5	Swipe-Tactile-	Swipe-Tactile-	Swipe-None-	Swipe-None-	None-Tactile-	None-Tactile-	None-None-	None-None-
	Visual	None	Visual	None	Visual	None	Visual	None
Participant #6	Swipe-Tactile-	Swipe-None-	Swipe-Tactile-	None-Tactile-	Swipe-None-	None-None-	None-Tactile-	None-None-
	None	None	Visual	None	Visual	None	Visual	Visual
Participant #7	Swipe-None-	None-Tactile-	Swipe-Tactile-	None-None-	Swipe-Tactile-	None-None-	Swipe-None-	None-Tactile-
	None	None	None	None	Visual	Visual	Visual	Visual
Participant #8	None-Tactile-	None-None-	Swipe-None-	None-None-	Swipe-Tactile-	None-Tactile-	Swipe-Tactile-	Swipe-None-
	None	None	None	Visual	None	Visual	Visual	Visual

Between vs Within-Subject Study Designs

Between-Subject Design

- > Participants are assigned to one level of the IV
- Advantages: very simple, no sequence effects, required when it is impossible for an individual to participate in all conditions (e.g., gender)
- Disadvantages: expense (time, effort, and number of participants), very insensitive to experimental manipulations

Within-Subject Design

- > Participants are assigned to each level of the IV
- > Advantages: economy, sensitiveness, cancelling out individual differences
- Disadvantages: carry-over effects from previous conditions, conditions need to be counterbalanced or randomized

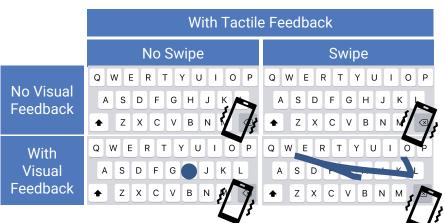
Empirical Research Prof. Dr. Valentin Schwind

31

Mixed Designs

- Your experiment can also include both types of independent variables
 - > between-subjects variable(s)
 - > within-subjects variable(s)
 - > e.g., in gender studies: do men or women type faster on my new swipe keyboard?
- Important: Participants must be randomly assigned to each level of the between-subjects variable(s)
 - > Gender is random by birth
- All participants are exposed to each level of the within-subjects variable(s)
 - > All men and women test my swipe keyboards. But, we must consider the order of conditions!
 - \rightarrow permutate the order (2 \rightarrow 2, 3 \rightarrow 6, 4 \rightarrow 24, 5 \rightarrow 120, 6 \rightarrow 720, ...)
 - > counter-balancing using e.g., a balanced Latin-Square
 - > fully random

Empirical Research Prof. Dr. Valentin Schwind


32

Great. Can we now evaluate what's better?

- Let's do the 8 conditions 4 times = 32 participants, measuring the WPM
- What's still the problem here?

- We need to be be more specific:
 - > "Swipe improves the typing performance."
 - > Are words per minute are identical to performance?
 - > What about "usability"?

Operationalization: From Concepts to Measures

- What is "performance"? What is "usability"? Measures can be ambigous!
 - > Let's take "usability"
- Concepts such as usability can contain or refer to other concepts
 - e.g., "workload", "efficiency", "satisfaction"
- Concepts such as workload can be composed of different variables
 - e.g., "cognitive workload" and "physical workload"
- Variables need definitions or working definitions (when we are not sure)
 - > e.g., "Cognitive workload refers to the amount of mental effort that is exerted or required while reasoning and thinking, to process information, make decisions, and solve problems." [3]
- Finally, we need to operationalize the definition of a concept using scientific methods and consensus
 - > e.g., NASA Taskload Index (TLX) [1], Cognitive Load Questionnaire [2]
 - > And even cognitive load has more subconcepts: intrinsic, extraneaous, germane [3] (but we are happy with cognitive load)

[1] Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In *Advances in psychology* (Vol. 52, pp. 139-183). North-Holland.

^[2] Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven, P. W. (2016). Cognitive load measurement as a means to advance cognitive load theory. In Cognitive Load Theory (pp. 63-71). Routledge.

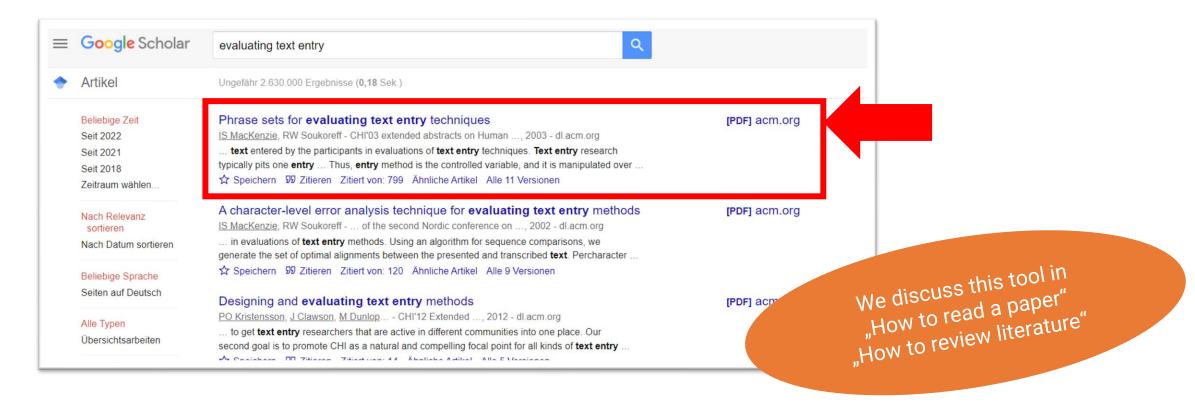
^[3] Skulmowski, Alexander; Rey, Günter Daniel (2020). "Subjective cognitive load surveys lead to divergent results for interactive learning media". Human Behavior and Emerging Technologies. 2 (2): 149–157. doi:10.1002/hbe2.184

Standardized Tools

- The process of defining the measurement for a concept that is not directly measurable (even objective measures such as "performance")
- Depends on theoretical definitions
- Makes a fuzzy concept (e.g., "emotions", "user experience", "likeability", "memorability", "usability", "health", ...) distinguishable, measurable, and understandable
- Even helps infer the existence of a concept (e.g., realism) using a tool
 - > If a standardized tool exist: take it
 - > If multiple standardized tools exist: take the most appropriate or validated one
 - > If no standardized tool exist: use own questions ← we'll talk about that, later

Can we now evaluate what's better? faster/more usable?

Important:


- > Each concept must be part of your research question (performance/usability)
- > Each dependent variable must be part of your hypothesis (WPM/CPM/error rate)
 - > They can operationalized as objective measure such as performance: WPM, CPM, error rate
 - They can operationalized as subjective measure such as usability: SUS, TLX Score

Hypotheses should be precise!

- > **H1a**: "Typing using Swipe increases the WPM on a touch display of smartphone." **H0a**: "Typing using Swipe does not increase the WPM on a touch display of smartphone."
- H1b: "Typing using Swipe increases the SUS score on a touch display of smartphone."
 H0b: "Typing using Swipe does not increase the SUS score on a touch display of smartphone."
- What else do we need for our experiment?

Tasks in HCI

- In HCI/science there are standardized tasks for many things (not everything)
 - > This is the point where you need help (or Google): ",evaluating text entry"

37

Science is strange, but nice, let's download it...

Short Talk: Fitt's Law & Text Input

CHI 2003: NEW HORIZONS

Phrase Sets for Evaluating Text Entry Techniques

I. Scott MacKenzie^{1,2} and R. William Soukoreff ¹

¹ Dept. of Computer Science York University Toronto, Ontario, Canada M3J 1P3 +1 416-736-2100 {smackenzie, will}{@acm.org

² Unit for Computer-Human Interaction (TAUCHI) Dept. of Computer & Information Sciences FIN-33014 University of Tampere Tampere, Finland +358 3 215 8566

ABSTRACT

In evaluations of text entry methods, participants enter phrases of text using a technique of interest while performance data are collected. This paper describes and publishes (via the internet) a collection of 500 phrases for such evaluations. Utility programs are also provided to compute statistical properties of the phrase set, or any other phrase set. The merits of using a pre-defined phrase set are described as are methodological considerations, such as attaining results that are generalizable and the possible addition of punctuation and other characters.

TEXT ENTRY EVALUATIONS

Among the desirable properties of experimental research are internal validity and external validity. Internal validity is attained if the effects observed are attributable to controlled variables. External validity means the results are generalizable to other subjects and situations. Simple as this seems, these attributes are typically at odds with one another. That is, too strictly attending to one tends to compromise the other. This paper pertains to one such point of tension between internal and external validity: the text entered by the participants in evaluations of text entry techniques.

Text entry research typically pits one entry method against another. Thus, entry method is the controlled variable, and it is manipulated over two or more levels, for example, Multitap vs. Letterwise in an experiment comparing text entry techniques for mobile phones [2], or Qwery vs. Opti in an experiment comparing soft keyboard layouts [3].

Allowing participants to freely enter "whatever comes to mind" seems desirable, since this minies typical usage. Such a procedure improves external validity since the results are generalizable. Although of unquestionable ment in gauging the overall usability of a system or implementation, such methodology also has problems. For one, accuracy is difficult to gauge since there is no source

Copyright is held by the author/owner(s).

CHI 2003, April 5-10, 2003, Ft. Lauderdale, Florida, USA.

ACM 1-58113-637-4/03/0004

text with which to compare the entered text. Also, the lack of control means performance measurements are coincident with spurious behaviours, such as pondering or secondary tasks. Thus, sources of variation are present in the dependent variables (e.g., speed or accuracy) that are not attributable to the controlled variable. This compromises internal validly because variations in measurements are, in part, due to other effects.

On balance, the preferred procedure – that used in the majority of research studies – is to present participants with pre-selected phrases of text. Phrases are retrieved randomly from a set and are presented to participants one by one to enter.

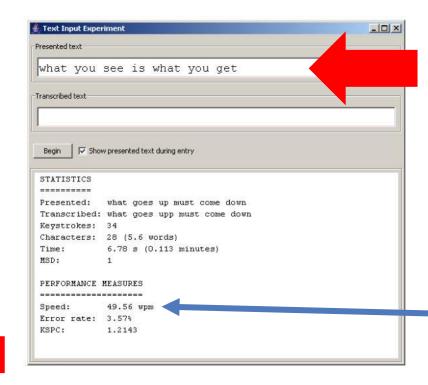
Creating a Phrase Set

In creating a phrase set, the goal is to use phrases that are moderate in length, easy to remember, and representative of the target language.

In a recent paper comparing two soft keyboards, MacKenzie and Zhang [3] used a set of 70 phrases. We recently expanded this set to 500 phrases. A few examples from the set follow:

video camera with a zoom lens have a good weekend what a monkey sees a monkey will do that is very unfortunate the back yard of our house I can see the rings on Saturn this is a very good idea

We have used the new phrase set with good results in recent studies [1, 5], and wish to share them with the community of text entry researchers via this paper.

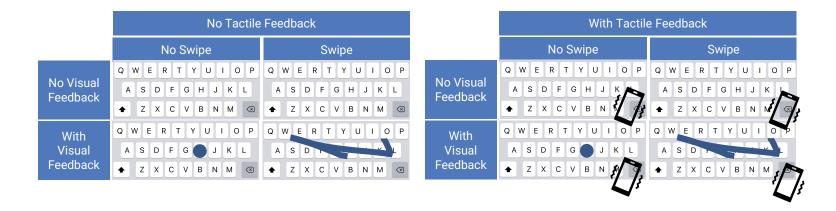

The phrases contain no punctuation symbols, and just a few instances of uppercase characters. (Participants may be instructed to ignore case and to enter all character lowercase.)

n http://www.yorku.ca/mack/PhraseSets.zip

local dialect (e.g., colour vs. color).

A phrase set should be representative of the tary language. The analysis of phrase sets is automated

754


It's a Java program ⊗

→ we need that on a smartphone


Your task in your project would be to develop and log everything correctly.

Can we now evaluate our keyboard?

2×2×2 Within-Subject Design, 8 Conditions, WPM, CPM, SUS, TLX, we have a task, ...

What else can we do?

Empirical Research Prof. Dr. Valentin Schwind

Qualitative or Quantitative Method?

What?	Quantitative	Qualitative
When?	To confirm a hypothesis using a objectively or subjective measure.	Complex contexts, when little is known about the underlying mechanisms.
General Procedure	 Selection of the quantitative methods Invitation of representative population Measurements in a controlled experiment Statistical analysis 	 Selection of the qualitative methods Selection of people (e.g., experts and/or users) Data collection of feedback and/or observation Transcription, translation, analysis
Data Analysis	Statistical (numerical data)	Interpretative (non-numerical data)
Method Examples	Controlled experiment, A-B testing	Semi-structured interview, group interviews (focus groups), field survey, observation,
Advantages	 Confirmation of important assumptions Objective, unbiased data and evaluation Standardized procedures 	 Generation of new knowledge Small sample is often sufficient Subjective, detailed, in-depth insights
Disadvantages	 Needs larger samples No deeper insights into causes Often inconclusive 	 Often biased by the participant and researcher Needs interpretation by the researcher Researchers often tend to quantify feedback

Empirical Research Prof.

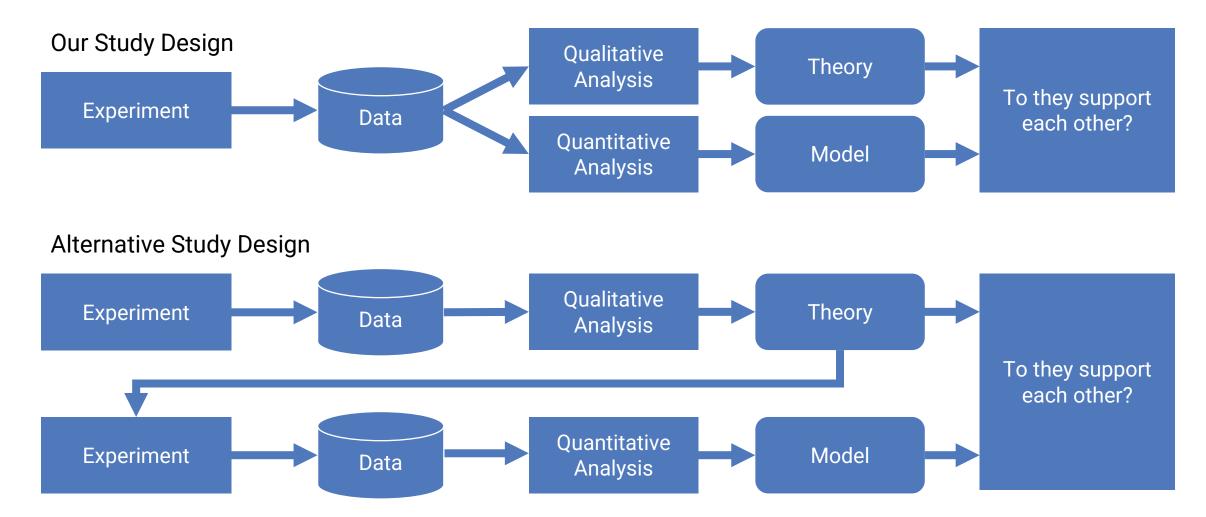
Question

Are there independent or dependent variables in qualitative research?

Do we need a Balanced Latin Square in qualitative research?

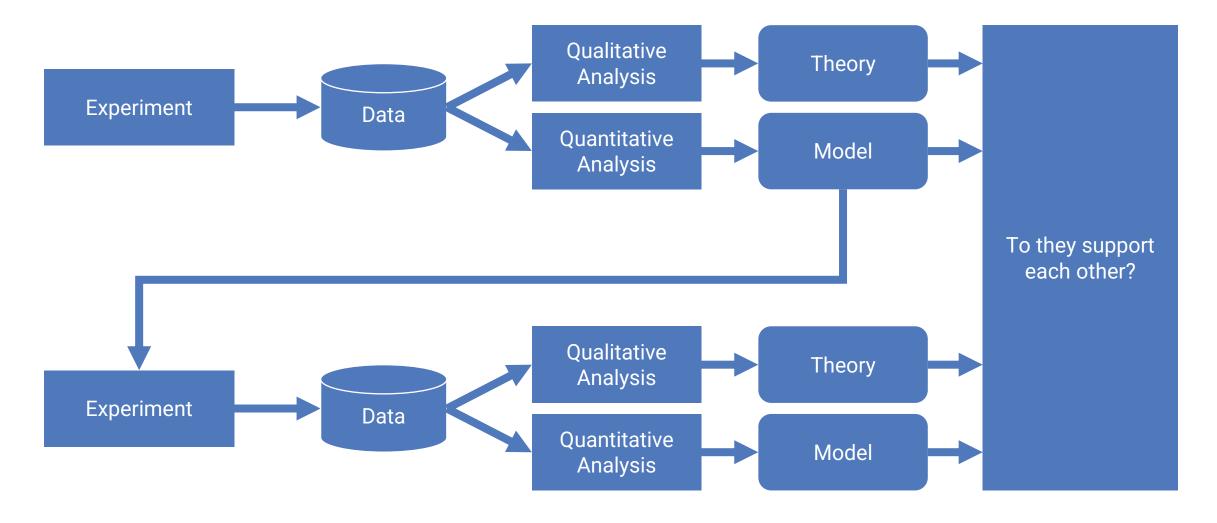
Empirical Research Prof. Dr. Valentin Schwind

IVs and DVs in Qualitative Studies?

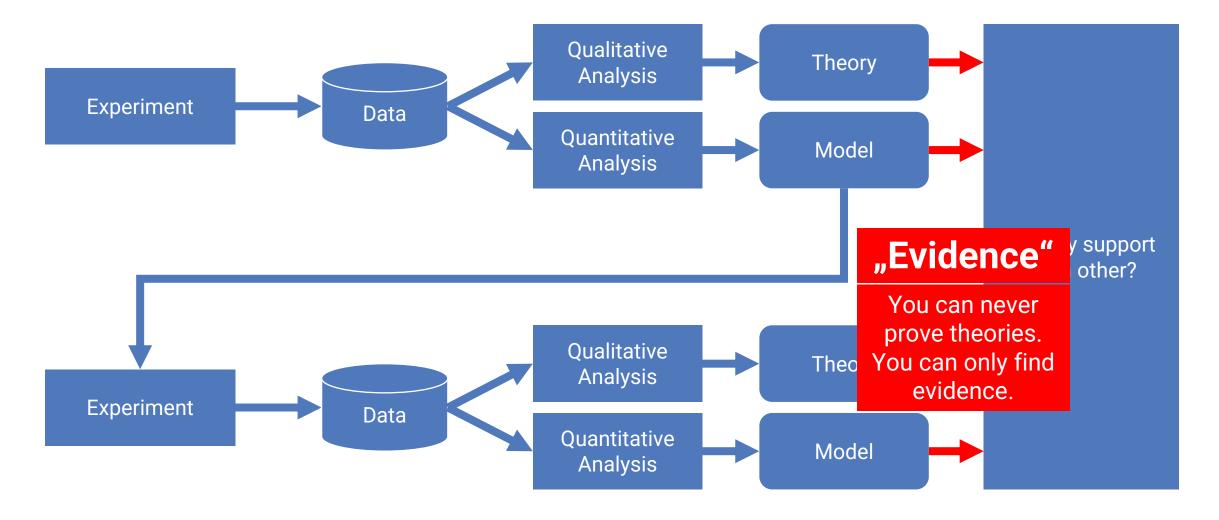

- While quantitative research aim to understand the cause-and-effect relationship,
 qualitative studies aim to understand more complex mechanisms behind
 - Consquently, the concept of IV and DV does not apply in the same manner
 - > Qualitative research is not driven by hypotheses and focuses on exploring and openended results gained by the collected feedback or observations
- Independent variables in qualitative research can be considered as the factor or "subject of the investigation"
 - > The order of "discussion stimuli" should be counterbalanced, too (see: "How to conduct a user study")
- Dependent variables in qualitative research can be considered as the analyzed "outcome", "feedback", or "responses" from the participants
 - > Results = DVs in quantitative studies = feedback or observations in qualitative studies

Quantiative and Qualitative ("Mixed") Methods: Example

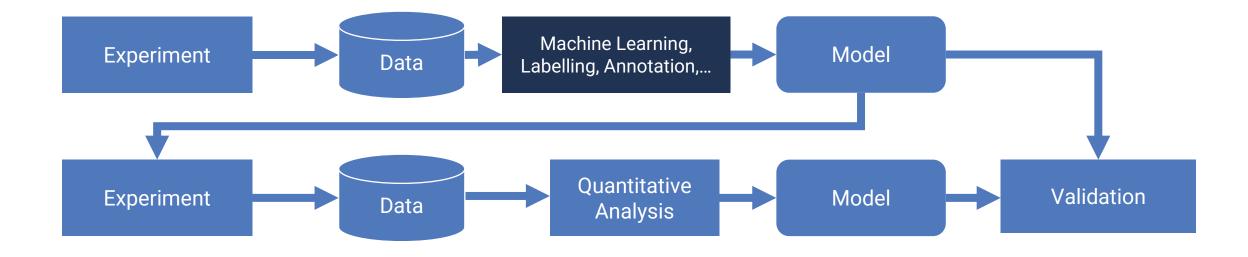
- Let's assume:
 - > H1a: "Typing using Swipe improves the WPM on a touch display of smartphone."
 - → H1a confirmed
 - > H1b: "Typing using Swipe decreases the SUS score on a touch display of smartphone."
 - → H1b not confirmed. The SUS score decreases. → Swipe has less usability!
- Using quantitative methods we only learned that higher typing performance (objectively) is negatively correlated to usability (subjectively).
- Using qualitative methods (e.g., in a semi-structured interview after each test) we would learn that there is a reason behind that mechanism:
 - > "The analysis of the qualitative feedback from showed that the participants perceived Swipe as faster, however, mentally more demanding as its visual feedback was ,distracting' (P1-P6, P8, and P12). P7 stated to need "more training" to master the Swipe technique."
 - → They need higher mental workload because of the visual distraction and probably need more training.


43

Study Designs


Empirical Research Prof. Dr. Valentin Schwind

Alternative Study Design


Empirical Research Prof. Dr. Valentin Schwind

Alternative Study Design

Empirical Research Prof. Dr. Valentin Schwind

Data-Driven Model Validation in HCI

Empirical Research Prof. Dr. Valentin Schwind

Objective Data (Examples)

Task Performance	 Task Completion Time (TCT) Success Rate Throughput (e.g., Fitts' Law) Word/Character input speed (e.g., typing) Error rate, Corrected error rate Accuracy, Precision Distance, Movements, Taps, 	
Arousal/ Stress/Relaxation	 Galvanic Skin Response/Electrodermal Activity (GSR/EDA) Blood pressure/Heart rate (BP/HR) Electromyography (EMG) 	
Emotions	Face recognitionElectroencephalography (EEG)Heart Rate Variation (HRV)	
Gaze	Eye-TrackingElectroencephalography (EEG)	
Sensual Acuity	Discrimination/Just-noticeable-difference (JND)Lateral/Sensory Inhibition	
Fitness / Ergonomics	Grip Strength, ergometer RangePosture assessment	
	- 1 Osture assessificiti	and many more

Empirical Research Prof. Dr. Valentin Schwind

Subjective Data (Examples)

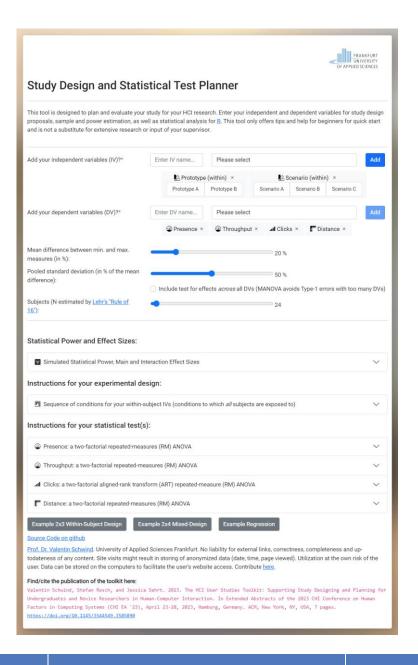

Workload	Nasa Task Load Index (TLX)Subjective Mental Effort Questionnaire (SMEQ)	
User Experience	 Usability Metric for User Experience (UMUX) Questionnaire for User Interaction Satisfaction (QUIS) 	
Usability	System Usability Scale (SUS)Computer System Usability Questionnaire	
Hedonic/Pragmatic Quality	 AttrakDIFF / AttrakDIFF mini 	
Acceptance	Technology Acceptance Model (TAM)Stereotype Content Model (SCM)	
Emotions	 Emotional Metric Outcomes (EMO) Differential Emotion Scale (DES) Positive and Negative Affect Schedule (PANAS) 	
Gaming Experience	 Game Experience Questionnaire (GEQ) 	
Immersion	 Presence Questionnaire (PQ) iGroup Presence Questionnaire (IPQ) 	
Motivation	 Intrinisic Motivation Inventory (IMI) 	
	 Motivation Questionnaire (MQ) 	and many more

Empirical Research Prof. Dr. Valentin Schwind

Qualitative Data (Examples)

Inquiries	 Structured, Unstructured, Semi-structured Interviews Task analysis Focus Groups Questionnaires / Surveys
Prototyping	Rapid Prototyping / Paper PrototypingTool Kit / Parts Kit
Observations	 Think Aloud Protocol Cooperative Evaluation Contextual Inquiries Case Study Activity / Task Analysis
Longitudinal Observations	Experience SamplingDiary Studies
Inspections	 Cognitive Walktrough / Heuristic Evaluation Card Sorting / Tree Tests Activity Analysis Pluralistic / Consistency Inspection
Elicitation	Agreement Rate (AR)Repertory Grid

Empirical Research Prof. Dr. Valentin Schwind


Empirical Research Prof. Dr. Valentin Schwind

Data Analysis in HCI

- You don't need to know all of the data collection methods just the ones you need to answer your research question
- Every measure needs a method for its analysis
 - > Objective and subjective measures are being evaluated using statistical tests
 - > Statistical tests depend on the hypothesis
 - We will talk about statistical tests later (you will love it)
 - Observations and qualitative feedback?
 - > Thematical Analysis
 - Content Analysis
 - > Narrative Analysis
 - Grounded Theory
 - >
- Is there more we can analyze?

Exercise: Study Design Plan

- Use our tool to find and plan your study design
 - > Goto: https://hci-studies.org/study-design-planner/
- Enter are your IVs, levels and DVs
 - Ignore the sliders and statistics
 - Go to "Instructions for your experimental design"
- Discuss in your group:
 - 1. What is the proposed study design of your study?
 - Does this work when you have a qualitative study?
 - 3. Is that here important when you do a literature review?

53

Tasks Next Time (TNT): Study Design / Study Plan

- Update your problem statement, add a section called "Method"
 - > Write down in your own words what you found in "Instructions for your experimental design" or explain in your own words your study plan
- Update and upload your presentation (PDF) with a study design that includes:
 - The incorporated feedback and things you need to update
 - Your update research question(s) and describe the operationalization of your concept(s)
 - > Describe your method in a few words. Depending on your research method ...
 - > quantitative: Name your IVs/DVs? within-subject? between-subject? levels? hypotheses?
 - > qualitative: Name your method and study plan? (factor, desired feedback, ...)
 - > literature review: Explain what of the stuff here is important for you?
 - > Draw your study design / study plan!