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Learning Goals
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▪ Understand …

what models are and why they are useful

know about their limitations

have a rough overview of models in HCI

▪ Be able to explain …

explain these models and give examples 

discuss implications and how models can be used to evaluate UIs



From https://www.jpl.nasa.gov/spaceimages/details.php?id=PIA12114 (PD)
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𝑇2 =
4𝜋²
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𝑟³



Models
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▪ Are representations of phenomena that help us to understand how something 

works or how it will work.

We need models for humans (e.g., Cognition, Mental Models,…)

We need models for systems (e.g., Regression, Machine Learning,…)

We need models how human interact with systems

▪ Models are never perfect. There will always be one that is better for specific 

questions.

▪ A model is only useful for specific phenomena but not is not useful for most 

phenomena.
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Prediction of Target Selection

Fitts’ Law
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In- and Output
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In- and Output
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distance

width



Paul Fitts‘ Experiment
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From: U-M Library Digital Collections. Bentley Image Bank, Bentley Historical Library. Accessed: March 27, 2020. CC BY 4.0

Four distances: 2, 4, 8, 16 inch
Four widths: 0.25, 0.5, 1.0, 2.0 inch



Fitts‘ Experiment
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From: Fitts, P. M. (1954). The information capacity of the human motor system in controlling the amplitude of movement. Journal of experimental psychology, 47(6), 381.
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The movement time (MT) to select a 
target is a function of the target’s 
width (W) and distance (D). It 
depends on the input device.

W

D

start

target

MT: movement time
a & b: input device-dependent constants
D: distance to the target
W: width of the target



The Index of Difficulty
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▪ Index of Difficulty, ID = 

MT = a + b ·ID

ID how difficult a task is independent from the input device

▪ Units:

a is measured in seconds

b is measured in seconds per bit

Index of Difficulty (ID) is described in bits



Determining a and b
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ID = 

a = 0.028 s
b = 0.112 s/bit

y = bx + a
y = 0.11 2x + 0.028
R² = 0.987

▪ D = 16, W = 0.25

▪ ID = log2(1+64) = 6.02



Predicting the Movement Time
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▪ a = 0.028s

▪ b = 0.112s/bit

▪ How long does it take to select a target that is 21 inch away and 3 inch wide?

▪ MT = 0.028 + 0.112 * log2(1+7) 

       = 0.028 + 0.112 * log2(8)

       = 0.028 + 0.112 * 3

       = 0.364ms



Determine a and b for another device / task
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Understanding Fitts' Law. (2024, November 14). Retrieved from https://us.humankinetics.com/blogs/excerpt/understanding-fitts-law

width distance MT

0,0625 4 0,697

0,0625 8 0,771

0,0625 16 0,896

0,0625 32 1,096

0,125 4 0,649

0,125 8 0,734

0,125 16 0,844

0,125 32 1,028

0,25 4 0,607

0,25 8 0,672

0,25 16 0,771

0,25 32 0,975

0,5 4 0,535

0,5 8 0,623

0,5 16 0,724

0,5 32 0,902

What are a and b for this?

a = 0,2234

b = 0,0926

y = 0,0926x + 0,2234
R² = 0,8455

0

0,2

0,4

0,6

0,8

1

1,2

2 4 6 8 10

M
T

ID

MT



Fitts‘ in 2D
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distance
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What are width and distance?



Fitts‘ in 2D
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Standardized 1D Fitts‘ Task
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Commonly using a fixed set of amplitudes 

and Widths, e.g.:

▪ Amplitude (A): 64, 128, 256, 512 pixels

▪ Width (W): 8, 16, 32, 64 pixels 



Standardized 2D Fitts‘ Task
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Commonly using a fixed set of amplitudes 

and Widths, e.g.:

▪ Amplitude (A): 64, 128, 256, 512 pixels

▪ Width (W): 8, 16, 32, 64 pixels 



Throughput

Prof. Dr. Valentin Schwind 20Fitts’ Law

▪ A single metric for a pointing device

Works with serial (a series of target 

selections)

Works with discrete (single target 

selections)

▪ Sufficient with six different IDs to 

determine the device-specific 

constants a and b



1D vs 2D
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MacKenzie, I. S. (2018). Fitts' law. In K. L. Norman & J. Kirakowski (Eds.), Handbook of human-computer interaction, pp. 349-370. Hoboken, NJ: Wiley. doi:10.1002/9781118976005



Serial vs Discrete
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MacKenzie, I. S., and Isokoski, P. (2008). Fitts' throughput and the speed-accuracy tradeoff. Proceedings of the ACM Conference on Human Factors in Computing Systems – CHI 2008, pp. 
1633-1636. New York: ACM.



Fitts‘ in 2D (ISO 9241-9)
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Guo, X. (2022). A Fitts' law evaluation and comparison for human and manipulator on touch task. Cognit. Comput. Syst., 4. doi: 10.1049/ccs2.12057



Effective Throughput
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▪ Effective measures (like effective distance and effective width) account for the user’s 

actual behavior and variability during the task – not on predefined (ideal) parameters

▪ The effective throughput (𝑻𝑷𝒆) is a refined metric in Fitts' Law studies that true 

measures both the speed and accuracy of pointing tasks. It is defined by:

𝑇𝑃𝑒 =
𝐼𝐷𝑒

𝑀𝑇
=

log2(
𝐴𝑒
𝑊𝑒

+1)

𝑀𝑇
with 

the effective amplitude (𝐴𝑒)

the effective width (𝑊𝑒)

the effective index of difficulty (𝐼𝐷𝑒)

the actual movement time (𝑀𝑇)



Effective Distance
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▪ Effective Distance (𝑨𝒆) is the actual distance covered by the user, combining both the 
nominal distance and deviations along the target axis

𝐴𝑒 = 𝑎 + 𝑑𝑥

𝒂 is the distance from the starting point to the target

𝒅𝒙 represents the effective movement variation by accounting for any overshoot or 
undershoot of the target along the intended path with the formula:

𝑑𝑥 =
𝑐2 − 𝑏2 − 𝑎²

2𝑎
with the distances between 

𝑎 = "from“ [x1, y1] and "to" [x2, y2]

𝑏 = "select" [x, y] and "to" [x2, y2]

𝑎 = "from" [x1, y1] and "select" [x, y]

MacKenzie, I. S., and Isokoski, P. (2008). Fitts' throughput and the speed-accuracy tradeoff. Proceedings of the ACM Conference on Human Factors in Computing Systems – CHI 2008, pp. 
1633-1636. New York: ACM.



Effective Width
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▪ The effective target width (𝑾𝒆) captures the endpoint variability

The variability and precision of the user's movements do not align 
perfectly with the physical dimensions of the target

𝑊𝑒 reflects the effective accuracy, not just the theoretical difficulty 
implied by the nominal width 𝑊 

▪ Effective width 𝑊𝑒 ​is derived from the standard deviation of the 
endpoint positions along the axis of movement 

𝑊𝑒 = 2 2 × 2 ⋅ σ = 2 ⋅ 2.066 ⋅ 𝑆𝐷𝑑𝑥 ≈ 4.133 ⋅ 𝑆𝐷𝑑𝑥

where 𝑺𝑫𝒙 is the standard deviation of effective movement variations

▪ 𝑊𝑒 is roughly equivalent to covering 96% of the data points in a 
normal distribution (two-tailed), encompassing nearly all endpoint 
variability

MacKenzie, I. S., and Isokoski, P. (2008). Fitts' throughput and the speed-accuracy tradeoff. Proceedings of the ACM Conference on Human Factors in Computing Systems – CHI 2008, pp. 
1633-1636. New York: ACM.



Effective Throughput
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𝑇𝑃𝑒 =
𝐼𝐷𝑒

𝑀𝑇
=

log2(
𝐴𝑒
𝑊𝑒

+ 1)

𝑀𝑇
=

log2(
𝑎 +

𝑐2 − 𝑏2 − 𝑎²
2𝑎

4.133 ⋅ 𝑆𝐷𝑑𝑥
+ 1)

𝑀𝑇
# Variables we need to solve Fitts' equation for 2 D
data$a <- hypot(data$fromX - data$toX, data$fromY - data$toY) # distance between "from" and "to"
data$b <- hypot(data$selectX - data$toX, data$selectY - data$toY) # distance between "select" and "to"
data$c <- hypot(data$fromX - data$selectX, data$fromY - data$selectY) # distance between "from" and "select"
data$dx <- (data$c^2  - data$b^2  - data$a^2 ) / (2 .0  * data$a)
data$AmpE <- data$a + data$dx

# Aggregate to get dxSD
means <- data %>% group_by(SubjectID, ID, Conditions) %>% summarize(

MT = mean(Duration), SD = sd(Duration), Ae = mean(AmpE), dxSD = sd(dx), Amp = mean(Amplitude),
Size = mean(Size), IDs = round(log2 ((mean(Amplitude) / mean(Size)) + 1 ), 2 ), .groups = 'drop‘) 

# Aggregate to get TPe
finalTPs <- means %>% group_by(SubjectID, Conditions, IDs) %>% summarize(

MeanTime = mean(MT), 
IDe = mean(log2 ((Ae/(4 .1 3 3  * dxSD)) + 1 )),
TPe = mean(log2 ((Ae/(4 .1 3 3  * dxSD)) + 1 ) / (MT/1 0 0 0 )),
TPs = mean(log2 (IDs) / (MT/1 0 0 0 )),
.groups = 'drop') 

Code example in R



Example
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▪ Setup

Target Distance (𝐷) = 100 pixels

Nominal Target Width (𝑊) = 20 pixels

Standard Deviation of endpoint spread (𝜎) = 5 pixels

Movement Time (𝑀𝑇) = 500 ms

▪ Effective Throughput Calculation

𝑊𝑒 = 4.133 × 5 = 20.665 𝑝𝑖𝑥𝑒𝑙𝑠

𝐼𝑒 = log2
100

20.665
+ 1 = log2 5.837 ≈ 2.54 𝑏𝑖𝑡𝑠

𝑇𝑃𝑒 =
2.54

0.5
= 5.08 𝑏𝑖𝑡/𝑠

100 px

20 px

5 px



Regression Trend Examples
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Priya, K., & Joshi, A. (2023). Fitts’ Throughput Vs Empirical Throughput: A Comparative Study. Human-Computer Interaction – INTERACT 2023. Springer. doi: 10.1007/978-3-031-42280-
5_28

Static IDs Effective IDs



Throughput Measures Examples
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Schwind, V., Halbhuber, D., Fehle, J., Sasse, J., Pfaffelhuber, A., Tögel, C., ...Henze, N. (2020). The Effects of Full-Body Avatar Movement Predictions in Virtual Reality using Neural Networks. 
ResearchGate, 1–11. doi: 10.1145/3385956.3418941

Mutasim, A., Batmaz, A., & Stuerzlinger, W. (2021). Pinch, Click, or Dwell: Comparing Different Selection Techniques for Eye-Gaze-Based Pointing in Virtual Reality. ResearchGate. doi: 
10.1145/3448018.3457998



Which device has the highest throughput?
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3.7 - 4.5 bit/s 2.3 - 3.0 bit/s 2.3 - 2.9 bit/s 2.55 bit/s
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Rule of Infinite Edges
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▪ Edges and corners are the easiest to reach

by a pointing device

The width of a target edge is infinite large

Only works in full screen

Pages are scrollable

▪ The coordinates of the corners are also 

called prime-pixels

∞

∞

∞

∞



The Dominance of the Mouse
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Image from Card, S. K., English, W. K., & Burr, B. J. (1978). Evaluation of mouse, rate-controlled isometric joystick, step keys, and text keys for text selection on a CRT. Ergonomics, 21(8), 
601-613.

Using Fitts’ Law “was a major factor leading to the 
mouse's commercial introduction by Xerox”

http://www2.parc.com/istl/groups/uir/people/stuart/stuart.htm



Complex UIs
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Pointing through tunnels

Steering Law
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Tunnels
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Changing Fitts’ Law to model steering tasks?
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width

distance



Steering Law Definition
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▪ The movement time (MT) to acquire a target through a tunnel is a function of the 
length (D) and width (W) of the tunnel. It depends on the input device and the 
number of tunnels.

MT: movement time

a and b: constants dependent on the pointing system

D:  distance, i.e., the length of the tunnel

W:  width of the tunnel (can have variable thickness)

C:  the parametrized path (any curvilinear shape)

ID=
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Visual Search Tasks

Hick‘s Law
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Image from: https://www.pexels.com/photo/grayscale-photography-of-assorted-shirts-hanged-on-clothes-rack-1884584/



Visual Search
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10s

1s

9s

8s

7s

6s

5s

4s

3s
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Find 
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Visual Search
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▪ Russia

▪ Ukraine

▪ France

▪ Spain

▪ Sweden

▪ Norway

▪ Germany

▪ Finland

▪ Poland

▪ Italy

▪ United Kingdom

▪ Romania

▪ Belarus

▪ Kazakhstan

▪ Greece

▪ Bulgaria

▪ Iceland

▪ Hungary

▪ Portugal

▪ Austria

▪ Czechia

▪ Serbia

▪ Ireland

▪ Lithuania

▪ Latvia

▪ Croatia

▪ Bosnia and Herzegovina

▪ Slovakia

▪ Estonia

▪ Denmark

▪ Switzerland

▪ Netherlands

▪ Moldova

▪ Belgium

▪ Armenia

▪ Albania

▪ North Macedonia

▪ Turkey

▪ Slovenia

▪ Montenegro

▪ Kosovo

▪ Cyprus

▪ Azerbaijan

▪ Luxembourg

▪ Georgia

▪ Andorra

▪ Malta

▪ Liechtenstein 0s

10s

1s

9s

8s

7s

6s

5s

4s

3s

2s

Find 
Denmark



Time Complexity for Unordered Lists
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▪ We have a list with n items in an unknown order

Time obviously increases with n

What is the time complexity for an algorithm in Big O notation?

O(n²)



Visual Search
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Visual Search
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▪ Albania

▪ Andorra

▪ Armenia

▪ Austria

▪ Azerbaijan

▪ Belarus

▪ Belgium

▪ Bosnia and Herzegovina

▪ Bulgaria

▪ Croatia

▪ Cyprus

▪ Czechia

▪ Denmark

▪ Estonia

▪ Finland

▪ France

▪ Georgia

▪ Germany

▪ Greece

▪ Hungary

▪ Iceland

▪ Ireland

▪ Italy

▪ Kazakhstan

▪ Kosovo

▪ Latvia

▪ Liechtenstein

▪ Lithuania

▪ Luxembourg

▪ Malta

▪ Moldova

▪ Montenegro

▪ Netherlands

▪ North Macedonia

▪ Norway

▪ Poland

▪ Portugal

▪ Romania

▪ Russia

▪ Serbia

▪ Slovakia

▪ Slovenia

▪ Spain

▪ Sweden

▪ Switzerland

▪ Turkey

▪ Ukraine

▪ United Kingdom 0s

10s

1s

9s

8s

7s

6s

5s

4s

3s

2s

Find 
Denmark



Time Complexity for Ordered Lists
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▪ We have a list with n items in an known order

▪ Time obviously increases with n

▪ What is the time complexity for an algorithm in Big O notation?

▪ O(log(n))



Hick‘s Law
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▪ Given n equally probable choices, the average reaction time T required to choose 

among the choices is approximately:

𝑇 =  𝑏 ∗ log2(𝑛 +  1)

▪ Common practical value: 𝑏 = 150 𝑚𝑠/𝑏𝑖𝑡

▪ Hick’s Law is often used to motivate menu designs

In an unordered list, search time is linear

In an ordered list, search time becomes logarithmic



Combining Models
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Routine Tasks

Power Law of Practice
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Image generated with Midjourney



Cigar Roller in Cuba
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Crossman, E. R. F. W. (1959). A theory of the acquisition of speed-skill. Ergonomics, 2(2):153–166.



Practice vs TCT
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McLaughlin, A., Simon, D., & Gillan, D. (2010). From Intention to Input: Motor Cognition, Motor Performance, and the Control of Technology. Reviews of Human Factors and Ergonomics, 6, 
123–171. doi: 10.1518/155723410X12849346788741



Learning by Doing
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▪ The more practice

the easier a task becomes

the faster a user becomes

▪ How does a skill improves over time?

General observation: User skills improve as power function 
of amount of practice

▪ General formula:

𝑇 = 𝑎 ∙ 𝑃−𝑏 or log(𝑇) = −𝑏 ⋅ log(𝑃) + log(𝑎)

with

T = task completion time

P = practice trials

a,b = device specific constants

practice trials
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The Three Stages of Learning and the Resting Debate
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Johanson, C., Gutwin, C., Bowey, J., & Mandryk, R. (2019). Press Pause when you Play: Comparing Spaced Practice Intervals for Skill Development in Games. . doi: 
10.1145/3311350.3347195



The Power of Practice
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▪ Continuous practice lacks rest intervals, which are critical for the brain to 

generalize feedback and avoid getting “stuck in a rut“

▪ Rest intervals may help break ineffective learning cycles, particularly in problem-

solving scenarios

▪ Debate exists on whether rest intervals should remain constant or adapt based on 

the learner's experience

Johanson, C., Gutwin, C., Bowey, J., & Mandryk, R. (2019). Press Pause when you Play: Comparing Spaced Practice Intervals for Skill Development in Games. . doi: 
10.1145/3311350.3347195
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Learning and Reacting

Keystroke-Level Model (KLM)
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Image from: https://pxhere.com/de/photo/779902 

https://pxhere.com/de/photo/779902


Currency Converter
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▪ Task: Convert 12 Euro in US Dollar

▪ one hand on the mouse, nothing selected

▪ What do we need to know?

Sum
me

From this 
currency

To this 
currency

Enter an amount
6



Currency Converter
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1. select text field
2. delete value
3. enter value
4. select Euro
5. select Dollar
6. select Convert

Sum
me

From this 
currency

To this 
currency

Enter an amount
6



Keystroke-Level Model (KLM)
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▪ Simplified version of GOMS "Goals, Operators, Methods, and Selections rules"

▪ KLM predicts how long it will take an expert (or trained) user to accomplish a 

routine task without errors using an interactive computer system 

▪ Execution of a task is decomposed into primitive operators

Physical motor operators

Pressing a button, pointing, drawing a line, …

Mental operator

Preparing for a physical action

System response operator

User waits for the system to do something

Card, Stuart K; Moran, Thomas P; Allen, Newell (1980). "The keystroke-level model for user performance time with interactive systems". Communications of the ACM. 23 (7): 396–

410. doi:10.1145/358886.358895. S2CID 5918086.

https://en.wikipedia.org/wiki/Doi_(identifier)
https://doi.org/10.1145%2F358886.358895
https://en.wikipedia.org/wiki/S2CID_(identifier)
https://api.semanticscholar.org/CorpusID:5918086


Keystroke-Level Model (KLM)
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Operator Description Associated Time

K Keystroke, typing one letter, number, etc. or 
function key such as ‘CRTL’ or ‘SHIFT’

H ‘Homing’, moving the hand between mouse and 
keyboard

B/BB Pressing (B) or clicking (BB) a button

P Pointing with a mouse to a target

D(nD, lD) Drawing nD straight line segments of length lD

M Subsumed time for mental acts; sometimes used 
as ‘look-at’

R(t) System response time, time during which the 
user cannot act



Keystroke-Level Model (KLM)

Prof. Dr. Valentin Schwind 66Keystroke-Level Model (KLM)

Operator Description Associated Time

K Keystroke, typing one letter, number, etc. or 
function key such as ‘CRTL’ or ‘SHIFT’

Expert typist (90 wpm): 0.12s
Averaged skilled typist (55 wpm): 0.20s
Average non-secretarial typist (40 wpm): 0.28
Worst typist (unfamiliar with keyboard): 1.2s

H ‘Homing’, moving the hand between mouse and 
keyboard

B/BB Pressing (B) or clicking (BB) a button

P Pointing with a mouse to a target

D(nD, lD) Drawing nD straight line segments of length lD

M Subsumed time for mental acts; sometimes used 
as ‘look-at’

R(t) System response time, time during which the 
user cannot act



Keystroke-Level Model (KLM)
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Operator Description Associated Time

K Keystroke, typing one letter, number, etc. or 
function key such as ‘CRTL’ or ‘SHIFT’

Expert typist (90 wpm): 0.12s
Averaged skilled typist (55 wpm): 0.20s
Average non-secretarial typist (40 wpm): 0.28
Worst typist (unfamiliar with keyboard): 1.2s

H ‘Homing’, moving the hand between mouse and 
keyboard

0.4s

B/BB Pressing (B) or clicking (BB) a button

P Pointing with a mouse to a target

D(nD, lD) Drawing nD straight line segments of length lD

M Subsumed time for mental acts; sometimes used 
as ‘look-at’

R(t) System response time, time during which the 
user cannot act



Keystroke-Level Model (KLM)
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Operator Description Associated Time

K Keystroke, typing one letter, number, etc. or 
function key such as ‘CRTL’ or ‘SHIFT’

Expert typist (90 wpm): 0.12s
Averaged skilled typist (55 wpm): 0.20s
Average non-secretarial typist (40 wpm): 0.28
Worst typist (unfamiliar with keyboard): 1.2s

H ‘Homing’, moving the hand between mouse and 
keyboard

0.4s

B/BB Pressing (B) or clicking (BB) a button 0.1s / 2*0.1s

P Pointing with a mouse to a target

D(nD, lD) Drawing nD straight line segments of length lD

M Subsumed time for mental acts; sometimes used 
as ‘look-at’

R(t) System response time, time during which the 
user cannot act
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Operator Description Associated Time

K Keystroke, typing one letter, number, etc. or 
function key such as ‘CRTL’ or ‘SHIFT’

Expert typist (90 wpm): 0.12s
Averaged skilled typist (55 wpm): 0.20s
Average non-secretarial typist (40 wpm): 0.28
Worst typist (unfamiliar with keyboard): 1.2s

H ‘Homing’, moving the hand between mouse and 
keyboard

0.4s

B/BB Pressing (B) or clicking (BB) a button 0.1s / 2*0.1s

P Pointing with a mouse to a target 0.8s to 1.5s with an average of 1.1s
Can also use Fitts’ Law

D(nD, lD) Drawing nD straight line segments of length lD

M Subsumed time for mental acts; sometimes used 
as ‘look-at’

R(t) System response time, time during which the 
user cannot act
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Operator Description Associated Time

K Keystroke, typing one letter, number, etc. or 
function key such as ‘CRTL’ or ‘SHIFT’

Expert typist (90 wpm): 0.12s
Averaged skilled typist (55 wpm): 0.20s
Average non-secretarial typist (40 wpm): 0.28
Worst typist (unfamiliar with keyboard): 1.2s

H ‘Homing’, moving the hand between mouse and 
keyboard

0.4s

B/BB Pressing (B) or clicking (BB) a button 0.1s / 2*0.1s

P Pointing with a mouse to a target 0.8s to 1.5s with an average of 1.1s
Can also use Fitts’ Law

D(nD, lD) Drawing nD straight line segments of length lD 0.9s*nD + 0.16*lD

M Subsumed time for mental acts; sometimes used 
as ‘look-at’

R(t) System response time, time during which the 
user cannot act
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Operator Description Associated Time

K Keystroke, typing one letter, number, etc. or 
function key such as ‘CRTL’ or ‘SHIFT’

Expert typist (90 wpm): 0.12s
Averaged skilled typist (55 wpm): 0.20s
Average non-secretarial typist (40 wpm): 0.28
Worst typist (unfamiliar with keyboard): 1.2s

H ‘Homing’, moving the hand between mouse and 
keyboard

0.4s

B/BB Pressing (B) or clicking (BB) a button 0.1s / 2*0.1s

P Pointing with a mouse to a target 0.8s to 1.5s with an average of 1.1s
Can also use Fitts’ Law

D(nD, lD) Drawing nD straight line segments of length lD 0.9s*nD + 0.16*lD

M Subsumed time for mental acts; sometimes used 
as ‘look-at’

1.35s

R(t) System response time, time during which the 
user cannot act
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Operator Description Associated Time

K Keystroke, typing one letter, number, etc. or 
function key such as ‘CRTL’ or ‘SHIFT’

Expert typist (90 wpm): 0.12s
Averaged skilled typist (55 wpm): 0.20s
Average non-secretarial typist (40 wpm): 0.28
Worst typist (unfamiliar with keyboard): 1.2s

H ‘Homing’, moving the hand between mouse and 
keyboard

0.4s

B/BB Pressing (B) or clicking (BB) a button 0.1s / 2*0.1s

P Pointing with a mouse to a target 0.8s to 1.5s with an average of 1.1s
Can also use Fitts’ Law

D(nD, lD) Drawing nD straight line segments of length lD 0.9s*nD + 0.16*lD

M Subsumed time for mental acts; sometimes used 
as ‘look-at’

1.35s

R(t) System response time, time during which the 
user cannot act

Dependent on the system
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Sum
me

From this 
currency

To this 
currency

Enter an amount
6

1. select text field
2. delete value
3. enter value
4. select Euro
5. select Dollar
6. select Convert

P, BB
H, K
M, K, K
H, M, P, BB
M, P, BB
P, BB

Total time:

 4 · 𝑃 +  8 · 𝐵 +  2 · 𝐻 +  3 · 𝑀 +  3 · 𝐾 =  𝟏𝟎, 𝟖𝟗𝒔

Operator Times:
P  ≈ 1.1s     B = 0.1s    H = 0.4s
M = 1.35s   K = 0.28s



Keystroke-Level Model (KLM)

Prof. Dr. Valentin Schwind 74Keystroke-Level Model (KLM)

Sum
me

From this 
currency

To this 
currency

Enter an amount
6

1. select text field
2. delete value
3. enter value
4. select Euro
5. select Dollar
6. select Convert

P, BB
H, K
M, K, K
H, M, P, BB
M, P, BB
P, BB

Operator Times:
P  ≈ 1.1s     B = 0.1s    H = 0.4s
M = 1.35s   K = 0.28s

Total time:

 4 · 𝑃 +  8 · 𝐵 +  2 · 𝐻 +  3 · 𝑀 +  3 · 𝐾 =  𝟏𝟎, 𝟖𝟗𝒔
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Version 1 Version 2

Version 3 Version 4

Hand on mouse, nothing selected, go to photo:

▪ Which is the fastest interface?

▪ Which is the slowest?
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▪ The Keystroke-Level Model predicts task completion time for simple dialogs

▪ Assumes a trained average user

▪ Especially useful to compare alternatives

▪ Using KLM by hand can become lengthy and complex

▪ KLM is not useful for tasks that require reasoning
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▪ Goals

(Verbal) description of what a user wants to accomplish

Various levels of complexity possible

▪ Operators

Possible actions in the system

Various levels of abstraction possible (sub-goals / ... / keystrokes)

▪ Methods

Sequences of operators that achieve a goal

▪ Selection rules

Rules that define when a user employs which method (among alternatives)
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GOMS

(CMN-)GOMS KLM NGOMSL CPM-GOMS

• Plain GOMS
• Pseudo-code
• First introduced by 

Card, Moran and 
Newell

• Keystroke-Level 
Model

• Simplified version 
of GOMS

• Natural GOMS 
Language

• Stricter version of 
GOMS

• Provides more 
well-defined, 
structured natural 
language

• Estimates learning 
time

• Cognitive 
Perceptual Motor 
analysis of activity

• Critical Path 
Method

• Based on the 
parallel multi-
processor stage of 
human information 
processing
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▪ GOAL: GET-MONEY

▪ GOAL: USE-CASH-MACHINE

▪ INSERT-CARD

▪ ENTER-PIN

▪ SELECT-GET-CASH

▪ ENTER-AMOUNT

▪ COLLECT-MONEY

▪ outer goal satisfied
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▪ GOAL: GET-MONEY

▪GOAL: USE-CASH-MACHINE

▪ INSERT-CARD

▪ENTER-PIN

▪SELECT-GET-CASH

▪ENTER-AMOUNT

▪COLLECT-CARD

▪COLLECT-MONEY

▪outer goal satisfied



Prof. Dr. Valentin Schwind 83GOMS



Prof. Dr. Valentin Schwind 84GOMS



GOMS Example: Closing a Window
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GOAL: CLOSE-WINDOW

 [select

  GOAL: USE-MENU-METHOD

   MOVE-MOUSE-TO-FILE-MENU

   PULL-DOWN-FILE-MENU

   CLICK-OVER-CLOSE-OPTION

  GOAL: USE-ALT-F4-METHOD

   HOLD-ALT-KEY

   PRESS-F4-KEY]

 VERIFY-CLOSE

For a particular user:

Rule 1: Select USE-MENU-METHOD unless 

     another rule applies

Rule 2: If the application is GAME,

     select ALT-F4-METHOD
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GOAL: CLOSE-WINDOW

 [select

  GOAL: USE-MENU-METHOD

   MOVE-MOUSE-TO-FILE-MENU

   PULL-DOWN-FILE-MENU

   CLICK-OVER-CLOSE-OPTION

  GOAL: USE-ALT-F4-METHOD

   HOLD-ALT-KEY

   PRESS-F4-KEY]

 VERIFY-CLOSE

For a particular user:

Rule 1: Select USE-MENU-METHOD unless 

     another rule applies

Rule 2: If the application is GAME,

     select ALT-F4-METHOD
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GOAL: CLOSE-WINDOW
 [select
  GOAL: USE-MENU-METHOD
   MOVE-MOUSE-TO-FILE-MENU
   PULL-DOWN-FILE-MENU
   CLICK-OVER-CLOSE-OPTION
  GOAL: USE-ALT-F4-METHOD
   HOLD-ALT-KEY
   PRESS-F4-KEY]
 VERIFY-CLOSE

For a particular user:
Rule 1: Select USE-MENU-METHOD unless 
     another rule applies
Rule 2: If the application is GAME,
     select ALT-F4-METHOD
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GOAL: CLOSE-WINDOW
 [select
  GOAL: USE-MENU-METHOD
   MOVE-MOUSE-TO-FILE-MENU
   PULL-DOWN-FILE-MENU
   CLICK-OVER-CLOSE-OPTION
  GOAL: USE-ALT-F4-METHOD
   HOLD-ALT-KEY
   PRESS-F4-KEY]
 VERIFY-CLOSE

For a particular user:
Rule 1: Select USE-MENU-METHOD unless 
     another rule applies
Rule 2: If the application is GAME,
     select ALT-F4-METHOD
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GOAL: CLOSE-WINDOW
 [select
  GOAL: USE-MENU-METHOD
   MOVE-MOUSE-TO-FILE-MENU
   PULL-DOWN-FILE-MENU
   CLICK-OVER-CLOSE-OPTION
  GOAL: USE-ALT-F4-METHOD
   HOLD-ALT-KEY
   PRESS-F4-KEY]
 VERIFY-CLOSE

For a particular user:
Rule 1: Select USE-MENU-METHOD unless 
     another rule applies
Rule 2: If the application is a GAME,
     select USE-ALT-F4-METHOD



GOMS Summary

Prof. Dr. Valentin Schwind 90GOMS

▪ Characteristics 

Can be used to model complex tasks

Clearly sets inner and outer goals

Cannot predict completion times

But the simpler KLM can

▪ Predictions

More operators, longer completion

Deep depth of goal structure → high short term-memory load

Users stop when goals are satisfied
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there should be light!

a brighter world

the gulf of evaluationthe gulf of execution

a dark world

refers to unclear mapping 
between intention and 
execution

refers to the degree to which an artifact 
provides representations that can be 
directly perceived and interpreted
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▪ Question: ”How to bridge the gulfs, especially the gulf of evaluation?”

The solution to this problem is precisely the task of the designer of an interface – the 
cognitive effort of the user must be minimized.

A good design should therefore assist the steps of action cycles and allow “a 
comfortable transition between the stages”.

▪ Examples:

Is it possible for the user to recognize the system status?

Does the UI provide sufficient feedback on the consequences of an action that could be 
executed?

Is the user able to understand the system feedback?

Does the UI provide sufficient feedback for all interpretations that are possible?

Can the user match his/her goal with the (changed) status of the system?



Seven Stages of Action
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perceive the state 
of the world

interpret the 
perception

evaluate the 
interpretation

goals

intend to act

plan sequence  of 
actions

execute the 
action sequence
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intend to act

plan sequence  
of actions

execute the 
action sequence

perceive the 
state of the 

world

interpret the 
perception

evaluate the 
interpretation

goals

clean up phone

delete trash, 
cache, videos

perform actions 
on my phone

some videos are 
not recording

clips are very 
short

cannot record 
long videos

record long 
videos
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▪ Avoid the gulf of evaluation

• Can the user tell what state the system is in?

• Can the user tell if the system is in the desired state?

• Can the user map from the system state to an interpretation?

▪ Avoid the gulf of execution

• Can the user tell what actions are possible?

• Does the device easily support required actions?

• Does the interface help with mapping from intention to physical movement?
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▪ Critical points

Forming inadequate goal

Not knowing the appropriate action

Not finding the correct action

Receiving inappropriate feedback

▪ Principles of good design

System state and actions are always visible

Good conceptual model with a consistent system image

Interfaces include good mappings that show the relationship between stages

Continuous feedback to the user



Watch
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▪ https://www.youtube.com/watch?v=ahtOCfyRbRg

▪ https://www.youtube.com/watch?v=n4fCHYbRcKw

https://www.youtube.com/watch?v=n4fCHYbRcKw
https://www.youtube.com/watch?v=n4fCHYbRcKw
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